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Abstract

This paper considers two separate , but related problems Involving

the design of rectangular layouts of m activities. In each of the

problems, costs are Incurred which are non—decreasing in distance

between activities. The distance between two activities is either the

worst—case rectilinear distance, or the worst—case Tchebyshev distance.

Minisum and minimax layout problems are then considered and solution

techniques are provided.
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Introduction and Definitions

This paper considers two sepèrate , but - related probles-u involving the design

of rectangular layouts of m activities. In each of the problems, costs are in-

curred which are nondecreasing in either the rectilinear distance or crane travel

time between activities, and it is desired to find rectangular layouts which

mfn{~{ze either a maximum or a total cost. The problems are idealized, and the so-

lutions obtained should thus perhaps best be viewed as design aids.

In what follows we first define the rectangular layouts of interest. Then

we state the two problems, and briefly discuss relevant literature. Next we

present algorithms which solve the problems, illustrate the use of the algorithms,

and identify some insights the algorithms provide . The last part of the paper

consists of the analysis needed to justify the algorithms.

In order to facilitate the problem statements and analysis we introduce

some definitions. Given m activities, with associated positive rnmbera

A1, ..., A , we define a layout to be a collection S • •
~~~~ 

S~} such

that S~, the planar region taken up by activity i, is a compact planar Bet

of area Ai for I c M II , ..., m}, m > 2, and such that S~ and S~ do not

overlap for i 
~ j. An ordered rectangular layout is a layout S for which

there is an ordering of 1, ... , m, say [11, ..., Em] (called the ordering

for s) such that u {s113 : 1 < I < j }  is a tectang le~ of

area ~~~ ! (A
u 1  

: 1 < i < j} for 1 c j < in. A doubly rectangular (ER)

layout is an ordered rectangular layout S for which S~ is the union of a

finite collection of rectangles, each of which has the same orientation with

respect to the a~~s, for i € N. Figures 1 — 6 illustrate DR layouts;

Pig. 1 gives some indication of how general such layout. can be. We denote

the collection of all DR layouts by C. A concentric square (CS) layout is

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~L
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a DR layout made up of concentric squares having the ordering (1], ... , [in]

f rom the center outwards . Note that a CS layout is completely defined by its

ordering. Fig. 2 illustrates a CS layout.

We shall restrict our analysis to DR layouts , and establish that certain

CS layouts are optimal for the problems we consider. In view of the fact that

standard construction practices generally dictate that buildings and rooms

have rectangular shapes , and in view of the fact that plots of land are usually

rectangular , it seems quite reasonable to consider DR layouts.

In order to develop objective functions for the problems of interest we

now consider rectilinear and Tchebyshev distances. Given any two points in

the plane, X1 
— (x1, y1) and — (x2, y2) ,  we denote the Tchebyshev distance

between and X2 by t (X1, X2) ,  where

t(X1, X2) — znax[1x1 — x2 1 ,  I~1 — 72 1]

For I a 1, 2 let denote the point obtained by rotating X~ 45 degrees with

respect to the ames. We denote the rectilinear distance between Xj — (Xji Yj)

and — (xi, 4) by r(Xj, Xi), where

r(Xj , X )  — Ix~ 
— x~ ( + Jyj  

— y~~.

It is known that the two distances are related as follows:

r(Xj , X~) a rr t(X1, X2). (1)

That is , the two distances are the same under a 45 degree rotation and change

of scale of TY. The relationship (1) is given in [1 1, and has previously

proven useful in the study of rectilinear location problems [2  1, [3 ) ,  as

well as rectilinear layout problems ( 5  ].

Due to the prevailing use of rectilinear aisle (and Street) structures,

most of the layout problem. of interest here involve rectilinear distances.

However , for analytical purpose. our approach will be to study a simpler

2
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layout problem in which the distances are Tchebyshev. Thus , if the original

problem is one in which rectilinear distances apply, we rotate any layout

under study by 45 degrees relative to the axes and using relation (1), multiply

each Tchebyshev distance by TT to obtain the corresponding rectilinear

distance. A more detailed discussion of the relation between rectilinear

and Tshebyshev distance is given in [5  ]. We emphasize the fact that all the

figures we display are for problems involving Tchebyshev distance, unless noted

otherwise. The displayed layouts must be rotated 45 degrees with respect to

the axes to obtain the layouts for the equivalent rectilinear distance problem.

We remark here that there is also at least one case where the Tchebyshev

distance is of direct interest. Consider the case where a crane can move

simultaneously and independently in two orthogonal directions , which are

parallel to the two axes. Suppose further that we ignore acceleration and

deceleration effects, and choose a measurement scale so that the two movement

velocities are the same, v, with v — 1. If the crane is at the point

~

• 
— (x1, y1) and moves to the point X2 — (x2, y2), then the time for the

crane to move to any point lying on the line x — x2 is t1 x~ — x2 1/v ,

while the time for the crane to move to any point lying on the line y — y2
is t2 

— Y2 I1 ’~ Because the crane is at if and only if its location

is both on the line x — x2 and the line y a y2 , the t ime for it to move to

is the greater of t1 and t2, max(t 1, t2
) ,  which is ju st the equation ( 1)  when

v — 1. Thus the layout problems we consider may also be interpreted as

problems for which all movement between activities is by crane, and the ob-

jective functions which we shall consider are nondecreasing functions of crane

t rave l t ime .

4
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Given any layout S in C~ we denote by Di(S) the maximum distance

between any point in S~ and any point in u {S~ : j  ~ N, j  # i}. That is, if
the layout problem involves Tchebyshev distances,

D1(S) — ur~
(S) ,

where

1~ i(S) — max[t(X~, X2) : X1 e Si’ X2 € u {S
~ 
: j N, j # i}].

If the layout problem involves rectilinear distances, we rotate S by 45 de-

grees to obtain say, S’, and we have

Di(S) — / 2 DT1(5’),

due to (1).

As discussed in [4 ] ,  Di(S) is a conservative overestimate, or worst—case
measure , of the distance between activity i and the other activities. To

illustrate D
1

(S) , with reference to Fig. 2, if S is a concentric square

layout, with order [1], [2], ..., Em] , and we def ine

d [i] — ( I B [1]  + / B )/ 2

(where B E A1 + ••~~ + A ) ,  it is easy to verify that when Tchebyshev distances .

apply , D1(S) — d
111, 

1 < 1  < m—l , D (S) D
1
(S).

Problem Statements and Related Literature

For every activity i in N , we suppose we are given a nondecreasing function

f1 which is defined on the nonnegative reals. Given a layout S in C
~ 
we define

— 

~i 
(D~(S)], i~e N,

F (S) — max[F1(S) : I € N],

C (5) — 
~ 
[F1(S) : I € N].
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It should be understood that the functions f 1 used in defining F(S) may differ

from the ones used in defining G(S) : they must , however , have the same pro-

perties of being defined on the nonnegative reals and being nondecreasing.

In either case , for a layout S in C~ , F1(S) Is a cost incurred for activity I

which is nondecreasing in the distance Di(S). F(S) is then a maximum cAst ,

while C(S) is a total cost. The minimax layout problem is then to find a lay-

out to minimize F(S), while the “mlnisum” problem is t~ find a layout to mini-

mize G(S) .

A rationale for the objective functions F and C Is discussed in 1 4 ]

in some detail. Briefly , instead of being concerned about distances between

every pair of activities, we are concerned about the greatest distance for

each activity, and incur costs which are proport ional to this greatest distance.

A similar rationale is discussed in ( 5  ]. We comment that all of the liters—

ture relevant to the two problems we consider is discussed in [4 1 and [5 ],

and so will not be discussed here. The problems considered in [4 ] are

analogs of the problems considered here when layouts must be made on the line,

e.g., an aisle. The problems considered in [ 5  ] are closely related to the

miniinax problem considered here when the functions f1 are defined by

f1(y) — y ,  1 < I < in. Thus the contributions of this paper consist of cx—

tending the results of [4) to the analogous planar case, and generalizing the

objective functions of the planar layout prob lems considered in ( 5  ] for

the special case where layouts are doubly rectangular.

So as to make clear the class of layouts over which we shall optimize ,

when S is a layout in C such that each edge in S is parallel to one axis and

perpendicular to the other , we call S at aligned doubly rectangular (ADR)

layout . A DR layout which is not aligned we call an unaligned doubly rec—

~~~~~~~~ (UDR) layout . Fig. 6 illustrates a UDR layout . Hence a DR layout

6
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is either an ADR or a UDR layout . We shall be minimizing over all DR layouts ,

both ADR and UDR . When an ADR layout is a CS layout we call it an aligned

concentric square (ACS) layout.

Given layouts S* and S in C for which D~(S*) < D1(S) for i e M , we say

that S* dominates S. We shall subsequently establish that any layout S in

C~ is dominated by an ACS layout S* in C~. Hence, due to the nondecreasing

property of the minimax and minisum objective functions in distance, it will

suffice to consider only ACS layouts in order to solve the two problems of

interest.

Solving the Minimax Problem

In order to solve the minimax problem we shall assume that activities

can be numbered so that f1 > 
~j+l’ 

that is, f~ (y) > f~~1(y) for all y > 0 ,

1 c j  < m-l. We can always satisfy this assumption when the f 1 are increasing

linear functions with the property that f~(O) — f~ (O) for all I # j, e.g.,

f~(y) — w1y, y > 0, 1 € N; for this case we number activities so that

v~ > w 1+i~ 
1 < 1 <  m—l. Also, we denote by S(p) the ACS layout such that

activity p surrounds all other activities and such that, otherwise, activities

surround one another in the order of increasing index number from the center

square outward. Fig. 2 illustrates S(3) if we suppose (1] 1, [2] — 2,

(3] — 4 , [4] — 5, [5] 6, and [6] — 3.

Minlmax Algorithm

(1) Number activities so that f1 > f2 > •‘~~ > f .

(2) Define a — in if A A -, otherwise define a — ni—i.

(3) Construct the set s {p : 1 c p < m-2, A
~ 

< A~} u { a

(4) Compute F(S(p)) for every p c

7
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(5) Any layout S(p*) for which

F(S(p*)) min{F(S(p) ) : p e

is a minimax layout .

We remark , given layouts S(p) and S(q) with 1 < q < p < i n, that

D1(S(p)) — D1(S(q)) for 1 < i < q—l. This fact can be useful in computing

either of the terms P(S(p)) or F(S(q)) once the other term is computed.

To illustrate the mininiax algorithm, consider an example where

Tchebyshev distances apply for which in — 6 , f~ (y) — w~y, 1 < i < 6 ,

(w1, w2, w3, w4, w5, w6) — (10, 8, 6 , 5, 3, 2),  (A1, A2, A3, A4, A5, A6) —

(33, 2 , 4 , 5, 8, 10) . Clearly f1 > f2 > f
3 

> f
4 > f5 

> f6. Since A
5 

< A6,

a — 6. = (1, 6) since A1 is the only A1 which is greater than A6 .

We list the F~ (S(p) ) for p — 1, 6 in Table 1. As can be seen from the table,

p* — 1, so S(l) is a minmmax layout . Fig . 2 illustrates S(1) on taking

(i] a 1+1 for 1 < i < 5 and [6] — 1. To solve the analogous minmmax problem

where rectilinear distances apply , since each f~ is linear , it is easy to

show that a 45 degree rotation of S(l) is an optimal layout , but tha t the

optimal object ive funct ion value is / 2 times F(S(l)) as given in Table 1.

We emphasize , it is because the functions f1, ..., f6 are linear in this

example that the rotated layout for the Tchebyshev problem solves the rectilinear

problem. In general, when the functions f1, ..., f~ are nonlinear it is nec-

essary to use the expression D
i
(S(p)) — 1 2 DT~ (S(p)) for computing F(S(p)) ,

p €

We now identify some insights obtainable from the minimax algorithm.

Consider first the case for which all the A1 are the same : in this case one

/ can verify that an ACS layout with order 1, 2 , .. ., in is a minmmax layout .

Recalling that f 1 ~~
. 

~2 > s ’ s  > 
~~~~ 

if we consider f1 to be a measure of the

8
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• TABLE 1: Illustration of Mininiax Algorithm

i F~(S(l)) F1(S(6) )

1 10(/29 + / 6 2  ) /2* 10(/ 33 + / 62 ) /2**

2 8(1 2 + 1 62 )/2 8(/ 35 + / 62 )/2

3 6(1 6 + /62  )12 6(/ 39 + / 62 )/2

4 5(/ 11 + / 62 )/2 5(/ 44 + 1 62 ) /2

5 3(/11 + 1 62 )/2  3(1 52 + 1 62 )/2

6 2( /  29 + 1 62 )/2 2(/  52 + / 62 )/2

* F(S(l)) a F1(S(l)) — 66.2959

** F(S(6) ) — F1(S(6) ) “ 

68.09299



r e l at ive  use of a c t i v i t y  i , then the minimax layout obtained has the property

that  the most used act ivity is in the middle , surrounded by the second most

used activity , etc. Alternatively , cons ider the case where the f 1 are

iden t ica l :  in th is case , with  Am 
= max(A1 - 1 < i < rn—i ) , one can verify

that  any ACS layout with activi ty m surrounding all the other activities is

a minimax layout. Motivation for such a layout being minirnax can be obtained

by recognizing that If activity m did not surround the others , then because

activi ty  m has the greatest area the distances to activities surrounding

activity m would be increased over and above their value in the minimax laycut .

More generally , when neither the f1 nor the A~ 
are identical, the mini—

max algorithm demonstrates the fact that  we must consider both the relative

values of the f . ,  and the relative values of the A1, in order to find

a minimax layout .

Solving the Ninisum Problem

• The minisuin problem appears to be a good deal more d i f f i cu l t  than the mini—

max prob lem. The helpful  feature of the minimax problem , in terms of the

analysis , is that in seeking a minimax layout from among the A~S layouts most

of the effort involves determining which activity should be “outside”: the

relative positions of other “inside” activities may have little effect on the

objective funct ion val ue . However , for the minisum problem , given an ACS

layout S with order [1], .. - ‘  [ ml ,  every term F [j J (S) has an effect  upon the

object ive function value. Thus the cost depends upon the order, and there are

ml possible different orders. Therefore, we need to impose more structure

upon the minisum problem in orde r to solve it .

Given the functions f 1, ..., f~ we define the funct ions h1, ... , h~ by

h~ (y) f~ (y) — f~~1(y). y > 0 , 1 < i < in— i , (2A)

hm(y) — 
~~~~~~ 

y > 0. (2B)

10



We assume that  each of the functions h 1, ~~~ 
h is nondecreas ing. When each

-
• 

of the functions f1, ..., f is dif ferentiable , wi th  f~ (y) denoting the den —

vative of f
1 evaluated at y, 

this nondecreasing assumption is equivalent to

f~ (y) 
~ 

y 10, 1 < I < rn—i , (3A)

f~ (y) > 0 .  (3B)

• Minis urn Algorithm

( Suppose the activities can be numbered so that h 1 is nondecreasing for

1 < I < m , and so that A1 ~ A2 
< “•  < A~ . Construct the ACS layout S* in

C with ordering 1, 2, ..., in. S* solves the minisum problem.
In

To illustrate the use of the algorithm , suppose all areas are the same ,

and that f1
(y) w1y, y 10, i E M. Since f~ (y) = w~ for y ~ 0 , if we number

the items so that w
1 ~~

w
1~1, 

1 < i < rn— i , since W > 0 the conditions (3) , and

thus the conditIons (2), are satisfied. The resultant ACS layout has the

intuitively appealing property that act Ivit y 1, which has the largest “weight”

• (vL) is placed in the middle , activity 2, 
with the second largest weight (w2)

surrounds activity 1, etc.

As a second illustration , if we suppose the functions f1, .. ., f to

be identical , then the algorithm constructs an ACS layout for which activity 1,

with smallest area (A1
), is in the middle, activity 2, with second smallest

area (A2) ,  surrounds activity 1, etc.

Since we can always number activities so that A1 
< A

2 
< “‘ < A n, the

only way the conditions the algorithm requires cannot be met is when some

function h1 is not nondecreasing: in such a case the minisum problem remains

effectively unsolved. However , a result we establ ish in the analysis (Property 6)

may still be useful in reducing the number of ACS layouts which must be con—

sidered in order to solve the problem.

11
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Dominance Analysis

In this section we establish that any layout S in C is dominated by an

ACS layout S* in C
in

Throughout this section , we assume the distance measure of the original

problem is Tcheb yshev. This provides no loss of generality since if the

• distance measure is rectilinear, it is clear that layout S* dominates layout

S in rectilinear distan~m measure if and only if S* dominates S (after each is

rotated 45 degrees) in Tchebyshev distance measure .

The dominance proof is by induction , and requires that the dominance results

be true for both m = 2 and m = 3 in order to establish the general result. Most

of the analysis deals with the case in — 3: once this case is established the

general result follows readily.

Throughout this section in order to simplify the notation we assume , given

any S C , that activities are numbered so that the ordering for S is

1, 2, ..., in; that is, [I] — I for I ~ M. Since activities may be numbered

arbitrarily our assumption involves no loss of generality.

We use the term distinct l!yout type to mean a DR layout which cannot be

obtained from another DR layout by means of a translation and/or rotation.

For any layout S — (S1, S
2
} in C2, either S

2 
“surrounds” S1, (in the sense

of Figure 3a) or S
1 

and S
2 
are adjacent rectangles. Hence we conclude that

Fig. 3 illustrates all the distinct layout types for in — 2. Likewise, for

m — 3, on letting T
2 

— S u S
2 
(which must be a rectangle by the ordering

convention) we conclude that all distinct layout types can be obtained using

• layouts as illustrated in Fig. 4, and the results appear as illustrate.d in

Fig. 5. Thus for in — 3 the analysis may be restricted to the types of lay-

outs shown in Fig. 5. For convenience, we refer to the layout type. illustrated

12
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in Fig. 5 as Types (a), (b), (c), (d), and (e). The D~ (S) expressions in

• Fig. 5 are valid when the corresponding layout is aligned; the B and

• expressions are valid regardless of orientation to the axes.

For an A~S layout S* in C
3 with ordering 1, 2, 3, it is easy to verify

• that D
i
(S*) = (/B 1 + I B ) / 2  for i = 1, 2 , and D3(S*) = D

2(S*). Thus in

order to establish dominance of A~S layouts for m 3 it is enough to show

for any S in C3, that D1(S) I ([B1 + ri~~)/2 , D
2

(S) 
~ 

([~g + [j)/2 < D3(S).

The following remark will be useful In the analysis.

Remark. Given positive numbers B~ , B, u , v , and nonnegative numbers a1, bi,
c~ , d1, such that

(a
1 + b1 

— u) (c
1 + d1 

— v) = B1 (4)

uv = B  (5)

it is true that

ai + b i +c j +d j > 21i7+2v’B , (6)

and

max (a ., b1, c~ , d~) 
~ 

(V B
1 + fi~~)/ 2 . (7)

Proo f. By the isoperimetric theorem for rectangles , given any positive numbers

x, y, and a for which xy = a , it is true that x + y > 2T~~. Applying this

theorem to (4) and (5) we obtain (a
1 + bi 

— u) + (c
1 

+ d
1 

— v) 
~ 
2/ B

1 
and

u + v > 2[1, which give (6) when added. Now if (7) is false , then each of

the terms a1, b1, c1, and d
1 is strictly less than (1 Bi + I B ) / 2 , and so

a1 + + c~ + d
1 41(”B1 + T1 )/2]  2 / B 1 + 2T1 , which contradicts (6).

Thus (7) is not false , and the claim is established.

In order to establish dominance of ACS layouts for in — 3, we consider

the Type (a) layout of Fig. 5 for both the aligned and unaligned cases . For

the remaining layout types of Fig. 5, we consider only the aligned cases.
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D2
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3
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D
1
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D2
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3
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B u v

3
1
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5 5 ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ i 1 ,2

D3
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B u v
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____  

B
1
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2
—V)
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D1

(S) m a x ( a
2—x 2 , b2 , c2 , d2)

I’. ~= I  D2
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D3
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2
m a x ( a 2 , b 2 , c2,d2)

Figure 5 — Distinct DR Layouts for m 3
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The analysis for the unaligned cases for types (b) — (e) is basically similar

to the unaligned case for the Type (a) layout, but differs in many small

de tails, and is tedious . We refer the reader to [6 ] for the complete analysis.

If the type (a) layout is aligned , then with the dimensions a
1, 

b
1
, c1, d1

as defined by the figure it is easy to see that D
1

(S) — max(a~~ ~~~ c~ , d1) ,

I — 1, 2, and that D
3

(S) — D
2(S). Further, the dimensions satisfy (4) and

(5) of the Remark , and so we conclude from (7) that S is dominated by an ACS

layout. Now suppose the layout in question, say S’ , is unaligned , and makes

an angle with the y axis of 0, as illustrated in Fig. 6. In this figure the

perimeter of the innermost rectangle represents the perimeter of either S
1 

or

S
2
, and it can be seen that D

1
(S’) a max(a , 

b~ , ~~ d
19, 

i — 1, 2, (and

• 
D
3
(S’) — D

2
(S’)) where

a~~= a 1 c o s O + c
1 sin O

b~ b1 cos 0 + d 1 sin O

c b
1
s in 0+ c

1 cos O

d~~~~a1
s i n 0+ d

1 coa 9

Further , the dimensions of the figure satIsfy (4) and (5) of the Remark, and so

(7) is true. Now suppose

0
1

(S’)  — max(a~, b~ , c~ , d~) < (I B
1 + f B )/2  . (8)

Then

+ b~ + c~ + d~ < 4 [ ( I  B
1 

+ I B ) / 2)  — 2/ Bi + 2/ B

and , using the equations for a~, ... , d and simplifying thus gives

(a
1 + b

1 
+ c~ + di) (sin 0 + cos 0) < 2/ B1 

+ 2/j  . (9)

Now since 0 < 0 < 900 , sin2 0 + cos2 0 — 1 implies 1 < sin 0 + cos 0, and

(a
1 + bi + c

1 
+ d

1
)l < (a~ + b1 + C

1 
+ d1) (sin 0 + cos 0). (10)

_ _  
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4 b~

~.d sjn0 b
1
cos0 —

0
/
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1
sin0 ~

o
a a sinO 

•

c
1
cos0 

~1 

~~~~~ cos0 

d~

b
b
1sInO I

_ _ _ _ _ _  

0

Figure 6. Example of Type a) UDR Layout •
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Combining (9) and (10) gives a~ + b~ + c1 + di 
< 2/ B

1 
+ 2/ B , which

contradicts (7). Thus (8) is impossible , and so , for Type (a) layouts ,

• D1(S’) I (/ B1 + I B )/2 for 1. = 1, 2. SInce D
3
(S’) — D2(S’), the dominance

result is established for Type (a) layouts.

Now for D1(S) for aligned layout Types (b) through (e) one can readily

verify using the appropriate dimensions on the f igures and the expressions

for D
1

(S) and B1, that the analysis is identical to that of D1(S) for the

aligned case of Type (a), and so D1(S) I (/B
1 + / B )/2.

For layout Types (b) , (c) , and (d), we note that D2(S) max(a2, b2, c2, d2
) —

D3(S), with (a2 + b2 —u) (c2 
+ d

2 
— v) = B2 and uv B. Thus we can employ

the Remark to conclude that D2(S) D3(S) > (I B
2 
+ V B )/2.

• Finally consider the Type (e) layout. We define e2 
— max(a2, b2, c2, d2),

and observe D3(S) = e2. Further, we may assume D
2

(S) I 1)1(S) (for otherwise

we could renumber activities 1 and 2 and obtain a DR layout satisfying the

assumption) . Since the dimensions a2 ,  b 2 , c2 ,  d2, u and v satisfy the conditions

of the Remark , it follows that e2 ~ 
(/ B2 + I B )/2 . Thus if we can establish

D2(S) > e~ our analysis for Type (e) layouts will be complete. Refer to Fig. 5

for the dimensions and the equations for D1(S) and D2(S). We consider two

cases: (1) b 2 > c
2 

and (ii) b2 < c 2. (1) GIven b2 > c2, suppose b2 > max(a2, d2).

Then b2 > max(a2 , c2, d2) ,  so b
2 

> max(a2, b2 
— x1, c2 ,  d2) — D2(S). But

D1(S) > b 2 and so D1(S) > D
2

(S) ,  which is a contradiction. Thus max (a2, d2) lb 2.

Since b2 > c2, max(a2, d2) > c2, so e2 — max(a2, b2 , c2 ,  d2) aax(a2, d2).

As D2(S) > max (a2, d2), D2(S) > e2. (ii) When b2 < c2,  e2 — max(a2, b2, c2, d2) —

max(a2, c2, d2). But clearly D2(S) Imax(a2, c2, d2), and so D
2

(S) > e 2.

This completes the analysis for in — 3.

18
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We suimnarize the foregoing analysis in

Lesina 2. Any layout S in C3 is dominated by an ACS layout S* in C3.

• • . We can now establish

Property 1. Given any layout S in C ,

Dr
(S) 1 (/  B

1 + T1)/2 , 1 < 1 < in l .

D (S) I ~“~m-l + TT)/2.

Proof. We know the claim is true for m = 2 and m = 3, due to Lemmas 1 and 2.

Thus assume the claim is true for rn — 1 1 3. It then suffices to show the

claim is true for in. Given any layout S in C~ , let us construct the layout S

as follows. Take ~ = S , 1 < I < m—2, ~ 
= S u S . Likewise defineI I — — in-i rn-i m

A = A , l < I < m—2 , A A +A .  Also letB A + • + A ,I I — — in— l rn—i m 1 1 1

1 < I < m—2 , ~ = ‘A + ... + A . We then note that S is in C , S has area— — 1 rn—i rn—i i

A , 1 < I < m—l , B = B , 1 < I < m—2 , and B = B. Now since S € C theI — — I I — — rn— i

inductive assumption implies

• D.(S) > (/~~~ + /~~~) / 2 , 1 < I < m—2.

Since S~ = S~ , B~ = 

~~~~~
, for 1 < I < m—2, and B B, we thus have

D
1

(S) > (I B~ + TT)/2, 1 < I < m—2. (11)

Next, for the same given layout S in Cm let us construct the layout ~ as

follows. Take = S
1 

u S a, S~ = S~~1, for 2 < 1  < m— l . Likewise define

= A
1 + A2 , A1 — Aj+l, 2 < I < m— l . Also let = A1 + ‘‘• + A1, 1 < i < m— 2 ,

= + ... + A . We then note that S is in C , S has area A for
1 rn— i rn— i I I

l < i < m — l,~~~~= B  fo r l < i < m ~l,and~~~”~ B. Now since~~~€ C  the— — I i+l — — rn— i

inductive assumption Implies

D1 
(~) 1( /~~ + /T)/2 , i < i < n ~-2

• ~~~~~~~ 1 (/B 2 + /1)/2 .

19
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Since S~~1 
= ~or 2 < I < rn—l , 

~~~~ 
= for 2 < I < ~~i and = B , we

• thus have

D1~ 1(S) > (I B
1~1 + 7i ) / 2 , 2~~ I < m—2

D~ (S) 
~ ~~ + TT) /2 (12)

so that

D1(S) I (I B~ + T i)/ 2 , 3 < I < r n— i .  (13)

Since m 
~~~ 

the conclusion now follows from (11), (12), and (13) .

An Immediate consequence of Property 1 is

Property 2. In order to find either a minimax or a minlsuin layout it suffices

to consider ACS layouts.

Minirnax Problem Analysis

Given an ACS layout S with order f l J ,  ..., [mJ , If h = Li) we say that

• actIvit~y h is in position i in S. If, in addition, activity j is In position

1+1 In S , and we construct the layout S from S by interchanging the positions

of activities h and j, we say we have constructed S from S by making an adjacent

interchan&e of activities h and j. Throughout the analysis for the minirnax

problem we assume the activities are numbered so that f1 .?. f2 ~ ~~
. f~.

Lenwia 3. Let S be an ACS layout such that for some j < k activities k and j

are In positions I and 1+1 respectively , for some i 1 < i < tn —2. If the lay-

out S Is constructed by making an adjacent interchange of activities j  and k ,

then it is true that F(S) < F(S) .

Proof. For S in C ,  activities k and j in positions I and 1+1 respectively , and

1+1 <rn-i implies Ok
(S) < D ~(S). With j < k , we have 

~k ~ f~ and so

• F
k

(S) — f
k

[D
k
(S)] < f~ [D~ (S)] — F

’
(S).

Thus

F~(S) — max [Fk(S), F~(S)]. (14)

20
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Since activity j  is In position I in S but in pos it ion 1+1 In S , and i+l < rn—i ,

D~(S) < D~(S). so f~ nondecreas ing implies

F~ ( S)a f~~[D~ (S) ] .5. f~ [D~ (S) ] — F
’
(S). (15)

• Since activity k is In position 1+1 in S while activity j  is in position

1+1 in S, Dk
(S) = D~(S)~ ~ ° 

~~ 
5. f~ implies

Fk (S) = Fk [Dk (S) ] < F ~ [D~ (s) ] = F
’
(S). (16)

From (14), and (15), and (16) we have

max[Fk (S) ,  F~ (S) ] < max[Fk (S) , F~ (S)] .  (17)

As all activities other than j and k have the same position in both S and S

we have

F1(S) = Fr (S) , I € M, 1 4 {j, k}. (18)

From (17) and (18) we conclude F(S) < F(S).

Recall that S(p) Is the ACS layout such that activity p surrounds all

other activities and, otherwise, activities surround one another, from the

center outward, In order of Increasing index number.

Property 3. If S is an A~S layout with activity p In position in, then

F (S( p))  ~ F(S) .

Proo f. Given the layout S, let us fix the location of the activity p in position

in of S. Recalling f1 I f 2 I I 
~~~ 

let us then find that activity having a

smallest index among those in positIons 1, ..., rn—i , and make successive pair—

vise interchanges as needed until it is in position 1 in a layout, say s{l~.

Then let us find that activity in Sf11 having a smallest index from among

those in positions 2, ... , m—l , and make successive pairwise interchanges as

needed until it is in position 2 in a layout, say S{2}. Continuing in this

manner we find that the activity In sf1—i) having a smallest index from among

those in positions 1, ..., rn—i , and make successive pairwise interchanges as

needed until it is position I in a layout, say sf1). When 1 — m-l we stop.
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Due to Lemma 3, F(S{tn-l}) < < F(S{1}) < F(S) . Clearly S{ni—l} — S(p) and

the conclusion follows.

Property 4. For any p, 1 
~ 
p 1 rn—i, if A ~ A , the F(S(in)) ~ F(S(p)).

Proof. In layout S(p), we note that activIty in is in position in—i. If we

construct the layout S from S(p) by interchanging the positions of activities

p and m in S(p), it is direct to verif y ,  because A~ 5 Am~ that

D (S) ID(S) 5. D (S(p)) = D (S(p)). (19)

• Since the positions of all other activities remain unchanged, we have

D~~S) < D 1
(S( p) ) ,  I € 14, 1 ~ (p. in). (20)

From (19) and (20) we conclude F(S) < F(S(p)). Since activity in is In

position in in S, Property 3 implies F(S(m)) i F(S). Because F(S) <

we have F(S(m)) I F(S(p)) .

We now have

Property 5. The minimax algorithm constructs a mininiax layout .

Proof: By Property 2 , to find a mlnimax layout It suffices to consider only

ACS layouts. Property 3 then implies it suffices to consider only the layouts

S(l), ..., S(m). Now if A 1 
> A it is easily established that F(S(m—1)) ~F(S(m)).

If A 1 < A ,  Property 4 gives F(S(m)) < F(S(m—l)). Thus, with reference

to step (2) of the algorithm, F(S(a)) — min {F (S(m—l)),  F(S(m)) }.  By Property 4 ,

if A.~ < Am for 1 < k < m—2 , then F(S (m) ) < F(S(k)) and so F(5(a) < F(S(m)) < F (S(k) ).

Thus it suffices to consider only S(a) together with those layouts S(p) in

{S(i), ..., S(m—2) } for which A~ > A~ in order to find a minimax layout.

Minisum Problem Analysis

The following property Is the key to the mlnisum problem analysis.

Property 6. suppose S is an ACS layout in C
~ 

having activities j  and k in

positions p and q respectively , where p < q . If A~ < A ~~ ~k 
— f~ is a nonde—

22
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creasing funct ion , an4 we construct the layout S and S by Interchanging the

posItIon of activities j and k, then C(S) < G(S).

Proof. We first consider the case where q < in. Denote by I~ , I2~ 
and 1

3 
the

collections of indices of activities in positions 1 through p—i in S, p+l

through q—l In S, and q+l through in In S. Note q < in Implies 13 # $. S and

S may be conveniently depicted (with positions from the inside to the outside

represented by positions from left to right) as follows:

pos. p poe. g

S : I
~ 

j 12 
k 13

• 
S : I

i 
k 12 ~‘ 1

3

Because the positions of activities in I~ remain unchanged,

Dr
(S) D

1
(s), I € 1

~
. (21)

Because A.K 
< A~. and activity k is in position p in S while activity j  Is in

position p In S,

Dk
(S) < D

1
(S). (22)

Because A.K 
< A~ and activities in 12 retain the same positions,

D1(S) < 01
(S) , I € ~~ (23)

Because activities j and k are in position q in S and S respectiveiy,

D~(S) — D
k
(S). (24)

Since the positions of activities in 1
3 

remain unchanged ,

D1(S) — D
1

(S) , I e I
3~ 

(25)

Since p < q C

D~ (S) < D
k

(S) , (26)
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so , sInce — f~ is a nondecreasing function ,

f k LDj
(5) ] — f

1
[D~(S)J < f~ [D~(S)J — f j [Dk (S) J .

or

f
J
IDk

(S) ) + f
kLDj

(S) ] < f~ [D~(S)) +

Now (24) and f~ nondecreasing implies

f~ (D~(s)I < fj
(D
k(Sfl .

wh ile (22) and 
~k 

nondecreasing implies

f
kl0k

(S)] .5.

Thus the latter three inequalities imply

• F
’

(S) + Fk(S) < F~(s) + F
k(S). (27)

From (21) , (23) ,  and (25) we have

~ (F
r

(S) : I E I~ U 12 U 13
) < ~ {F

1(S) : I E I~ u 12 U 1
3

} (28)

The addition of (27) and (28) gives C(S) < G(S).

For the remaining case where q — in, 13 
— •. Upon setting 1

3 
— $, changing

(24) to D~ (S ) < D k (S) , and changing (26) to D~(S) < Dk(S) , the analysis goes

through exactly as before.

The repeated use of Property 6, together with Property 2, gives
• 

• 

Property 7. If S~ Is an ACS layout in order 1, 2, ..., m for wh ich f 1 
—

is a nondecreasing f unction for 1 < I < rn— i , and A1 < Aj+l, 1 < I < rn-l, then

• S* solves the minisum problem.

• 24
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